Question		on	Answer	Marks	Guidance
1	(i)		EITHER		
			$S_{xy} = \Sigma xy - \frac{1}{n} \Sigma x \Sigma y = 600.41 - \frac{1}{10} \times 113.69 \times 52.81 = 0.01311$	M1	For method for S_{xy}
			$S_{xx} = \Sigma x^2 - \frac{1}{n} (\Sigma x)^2 = 1292.56 - \frac{1}{10} \times 113.69^2 = 0.01839$	M1	For method for at least one of S_{xx} or S_{yy}
			$S_{yy} = \Sigma y^2 - \frac{1}{n} (\Sigma y)^2 = 278.91 - \frac{1}{10} \times 52.81^2 = 0.02039$	A1	For at least one of S_{xy} , S_{xx} or S_{yy} correct
			S ₃₅ 0.01311	M1	For fully correct structure of <i>r</i>
			$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{0.01311}{\sqrt{0.01839 \times 0.02039}} = 0.677$	A1	For answer rounding to 0.68
			OR $cov(x,y) = \frac{\sum xy}{n} - \frac{1}{xy} = 600.41/10 - 11.369 \times 5.281 = 0.001311$	M1	For method for $cov(x,y)$
			rmsd(x) = $\sqrt{\frac{S_{xx}}{n}}$ = $\sqrt{(0.01839/10)}$ = $\sqrt{0.001839}$ = 0.04288	M1	For method for at least one msd or rmsd
			rmsd(y) = $\sqrt{\frac{S_{yy}}{n}}$ = $\sqrt{(0.02039/10)}$ = $\sqrt{0.002039}$ = 0.04516	A1	For at least one of $cov(x,y)$, msd or $rmsd$ correct
			cov(x,y) = 0.001311	M1	For fully correct structure of <i>r</i>
			$r = \frac{\text{cov}(x,y)}{rmsd(x)rmsd(y)} = \frac{0.001311}{0.04288 \times 0.04516} = 0.677$	A1	For answer rounding to 0.68
				[5]	Methods mixed – max M0M1A1M0A0
1	(ii)		H_0 : $\rho = 0$	B1	For H ₀ , H ₁ in symbols. Hypotheses in words must refer to
			H_1 : $\rho \neq 0$ (two-tailed test)		population. Do not allow alternative symbols unless clearly defined as the population correlation coefficient.
			where ρ is the population correlation coefficient	B1	For defining ρ . Condone omission of "population" if correct notation ρ is used, but if ρ is defined as the sample correlation coefficient then award B0 .
			For $n = 10$, 10% critical value = 0.5494	B1	CAO Note that critical values for a one-tailed test at the 10% level are not available in tables.

			Since 0.677 > 0.5494 the result is significant.	M1	For sensible comparison leading to a conclusion provided that $ r < 1$. The comparison can be in the form of a diagram as long as it is clear and unambiguous. Sensible comparison: e.g. $0.677 > 0.5494$ is 'sensible' whereas $0.677 > -0.5494$ is 'not sensible'. Reversed inequality sign e.g. $0.677 < 0.5494$ etc. gets max M1 A0.
			(Thus we have sufficient evidence to) reject H_0	A1*	For reject H_0 o.e. FT their r and critical value from 10% 2-tail column.
			There is sufficient evidence at the 10% level to suggest that there is correlation between times for the first and last sections.	E1dep*	For correct, non-assertive conclusion in context. Allow ' x and y ' for context. E0 if H ₀ and H ₁ not stated, reversed or mention a value other than zero for ρ in H ₀ . Do not allow 'positive correlation' or 'association'
1	(iii)		The underlying population must have a bivariate Normal	B1	Condone "bivariate Normal distribution", "underlying
	(==)		distribution.		bivariate Normal distribution", but do not allow "the data
					have a bivariate Normal distribution"
			The points in the scatter diagram should have a roughly elliptical shape.	E1	Condone 'oval' or suitable diagram
				[2]	
1	(iv)		The hypothesis test has shown that there appears to be correlation.	E1	For relevant comment relating to the test result or positive value of <i>r</i> in supporting (unless FT leads to not supporting) the commentator's suggestion. Or correlation does not imply causation. There may be a third factor. For questioning the use of the word 'must'
			However it could be that there is a third causal factor	E1	Allow any two suitable, statistically based comments.
				[2]	7 mow any two suitable, statistically based comments.
1	(v)	(A)	Yes because the critical value at the 1% level is 0.7646	B1*	B1 for 0.7646 seen
			which is larger than the test statistic	E1dep*	E1 for comment consistent with their (ii) provided r < 1
				[2]	

4		(D)		Б1	XXX 12 1 . 1
1	(v)	(<i>B</i>)	One advantage of a 1% level is that one is less likely to reject the	E1	o.e. Wording must be clear.
			null hypothesis when it is true.		
			One disadvantage of a 1% level is that one is more likely to	E1	o.e.
			accept the null hypothesis when it is false.		
				[2]	
2	(i)		Binomial(1200,1/300)	B1	For binomial.
				B1dep	For parameters
				[2]	Allow B(1200, 1/300) and B(1200, 0.00333)
2	(ii)		Because n is large and p is small	E1, E1	Allow <i>n</i> is large and $np < 10$.
					Allow "sample is large" for <i>n</i> is large and "mean \approx
					variance" for "p is small"
				[2]	T T T T T T T T T T T T T T T T T T T
2	(iii)		$\lambda = 1200 \times 1/300 = 4$	B1	For λ FT their p
-	(111)			M1	For attempt to find $P(X = 1)$ using Poisson p.d.f. or tables
			(A) $P(X=1) = e^{-4} \frac{4^1}{1!} = 0.0733 (3 \text{ s.f.})$	1/11	To attempt to find $\Gamma(X=1)$ using Foisson p.u.i. of tables
			1!		
			or from tables $= 0.0916 - 0.0183 = 0.0733$	A1	Allow answers which round to 0.073 www. FT their λ (=
					np). No FT for $\lambda = 1/300$.
			(B) Using tables: $P(X > 4) = 1 - P(X \le 4)$	M1	For finding $1 - P(X \le 4)$
			= 1 - 0.6288 = 0.3712	A1	CAO For answers rounding to 0.371 www
				[5]	8
2	(iv)		$\mu = 80$	B1	If symbols/words used then they must be correct.
	()		$\sigma^2 = 80$	B1	Allow σ^2 rounding to 79.7 from original binomial.
					FT their λ (= np)
				[2]	
2	(v)	(A)	(00 5 00)	B1	For correct continuity correction.
	(*)	(11)	$P(Y \ge 90) = P\left(Z \ge \frac{89.5 - 80}{\sqrt{80}}\right)$	M1	For probability using correct tail and structure (condone
			$\left(2-\sqrt{80}\right)$	1011	omission of c.c.)
					Offission of c.c.)
			$= D(7 > 1.062) = 1 \Phi(1.062)$		$\sigma^2 = 70.72 \text{ leads to } P(7 > 1.064)$
			$= P(Z > 1.062) = 1 - \Phi(1.062)$	A 1	$\sigma^2 = 79.73$ leads to $P(Z > 1.064)$
			= 1 - 0.8559 = 0.1441	A1cao	$\sigma^2 = 79.73$ leads to $1 - 0.8563 = 0.1437$.
					Allow 0.144 www.
					NOTE 0.1441 from B(24000, 1/300) gets 0/3
				[3]	

4767	Mark Scheme	June 2012

	T		T		T 1
2	(v)	(<i>B</i>)	$P(Y \le k) > 0.05$		
			From tables $\Phi^{-1}(0.05) = -1.645$	B1	For ±1.645 seen
			$\frac{(k+0.5)-80}{\sqrt{80}} = -1.645$	M1	For correct equation in k seen or equivalent – e.g. allow
			${\sqrt{80}} = -1.645$		$+1.645$ used if numerator reversed. FT their μ , σ^2 and z-
			νου		value. Condone omission of, or incorrect, continuity
					correction.
			$k + 0.5 = 80 - (1.645 \times \sqrt{80}) = 65.29$	A1	A1 for 65.29 or 64.79 or 65.79 ($\sigma^2 = 79.73$ leads to 65.31 or
			k > 64.79		64.81 or 65.81) Allow 3s.f.
					,
			So least value of $k = 65$	A1	For rounding 64.79 or 64.81 up to give $k = 65$.
					See additional notes for alternative method
				[4]	
3	(i)		(750 – 751 4)	M1	For standardizing
			$P(X \ge 750) = P\left(Z \ge \frac{750 - 751.4}{2.5}\right)$	M1	For correct structure (M0 if continuity correction used)
			(2.5)		, , , , , , , , , , , , , , , , , , ,
			$= P(Z > -0.56) = \Phi(0.56) = 0.7123$	A1	CAO Allow 0.712 www
				[3]	
3	(ii)		$P(all 6 at least 750ml) = 0.7123^6$	M1	For (their answer to part (i)) ⁶
	, ,		= 0.1306	A1	FT 3s.f.
				[2]	
3	(iii)		(25)	M1	For using Binomial(25, p) with their p from part (ii)
	, ,		$P(Y=0) = \times 0.8694^{25} = 0.0302$		
			$P(Y=0) = {25 \choose 0} \times 0.8694^{25} (= 0.0302)$		
			$P(Y=1) = {25 \choose 1} \times 0.8694^{24} \times 0.1306 \ (= 0.1135)$	M1	For correct structure of either $P(Y = 0)$ or $P(Y = 1)$ with their
			$P(Y=1) = \left \begin{array}{c} 1 \\ 1 \end{array} \right \times 0.8694^{24} \times 0.1306 \ (= 0.1135)$		p from part (ii) M0 if p and q reversed
			P(Y=0) + P(Y=1) = 0.144		
			$P(Y \ge 2) = 1 - 0.144$	M1dep	For 1 – sum of both probabilities
			=0.856	A1	CAO
				[4]	

		1			
3	(iv)		$P(Z < \frac{750 - \mu}{2.5}) = 0.02$		
			$\Phi^{-1}(0.02) = -2.054$	B1	For ±2.054 seen. Allow ±2.055
			$\frac{750 - \mu}{2.5} = -2.054$	M1	For correct equation as seen or equivalent. FT $\sigma = \sqrt{2.5}$. M0
			2.5		if c.c. used.
			$\mu = 750 + 2.054 \times 2.5$	M1	For correctly rearranging their equation (if 750 used in numerator) for μ , FT their z
			= 755.1	A1 [4]	cao Condone 755 or 5 s.f. rounding to 755.1 www
3	(v)		$P(Z < \frac{750 - 751.4}{\sigma}) = 0.02$	F.1	
			$\Gamma(Z < \frac{\sigma}{\sigma}) = 0.02$		
			$\frac{750 - 751.4}{} = -2.054$	M1	For correct equation as seen or equivalent
			σ	M1	For correctly rearranging their equation (if 750 used in
			$\sigma = \frac{-1.4}{-2.054}$	1,11	numerator) for σ unless this leads to σ < 0
			= 0.682	A1	cao Allow answers rounding to 0.68 www
	(•)			[3] E1	
3	(vi)		Probably easier to change the mean (as reducing the standard. deviation would require a much more accurate filling process).	EI	
			However increasing the mean would result in fewer bottles being		
			filled overall and so less profit for the owners, so reducing the	E1	For "preferable to reduce the standard deviation" with valid
			standard deviation would be preferable to the vineyard owners.	2.1	reason.
			· · · · · · · · · · · · · · · · · · ·	[2]	
4	(a)	(i)	Expected frequency = $67/150 \times 57 = 25.46$	B1	For 25.46
			Contribution = $(34 - 25.46)^2 / 25.46$	M1	For valid attempt at (O-E) ² /E
			= 2.8646	A1	Correct values used to give answer which rounds to 2.8646
				F.6.7	NB Answer given
				[3]	

	1	1			
4	(a)	(ii)	H ₀ : no association between type of cake and classification of	B1	For both hypotheses in context
			person.		
			H ₁ : some association between type of cake and classification of		
			person.		
			Test statistic $X^2 = 12.86$		
			Refer to X_3^2	B1	For 3 degrees of freedom
			Critical value at 1% level = 11.34	B1	CAO For cv. No FT from here if wrong/omitted
			Result is significant	B1	For significant
			There is evidence to suggest association between type of cake and	E1	For correct, non-assertive conclusion, in context.
			classification of person.		
			NB if H ₀ H ₁ reversed, omitted or 'correlation' mentioned, do not		
			award first B1 or final E1		
			W/WW 11100 2 1 01 111111 21	[5]	
4	(b)		$\bar{x} = 4.995$	B1	For 4.995 seen
			H_0 : $\mu = 5$	B1	For use of 5 in hypotheses.
			$H_1: \mu < 5$	B1	For both correct. Hypotheses in words must refer to
					population. Do not allow alternative symbols unless clearly
					defined as the population mean.
			Where μ denotes the mean content of the bags of flour (in the	B1	For definition of μ in context. Condone omission of
			population)		"population" if correct notation μ is used, but if μ is defined
					as the sample mean then award B0 .
			4.995 - 5.0 - 0.005	M1*	must include √8
			Test statistic = $\frac{4.995 - 5.0}{0.0072 / \sqrt{8}} = \frac{-0.005}{0.002546} = -1.964$	A 1	FT their 🛪 Allow +1.964 only if later compared with +1.645
			·		
			Lower 5% level 1 tailed critical value of $z = -1.645$	B1*	For –1.645 No FT from here if wrong.
					Must be −1.645 unless it is clear that absolute values are
					being used.
			-1.964 < -1.645 so significant.	M1	For sensible comparison with correct c.v. leading to a
				dep*	conclusion.
			There is sufficient evidence to reject H ₀		
			There is sufficient evidence to suggest that the average contents	A1	For non-assertive conclusion in words and in context. No FT
			of bags is less than 5kg.		here.
					See additional notes.
				[9]	

ADDITIONAL NOTES REGARDING QUESTION 2 (v) B

M1 for using a trial and improvement method with N(80,80) or N(80, 79.73) to find $P(Y \le k)$ for any k. The distribution being used needs to be made clear.

A1 for $P(Y \le 66) = 0.0587...$ (0.0584... from $\sigma^2 = 79.73$) or $P(Y \le 65) = 0.0467...$ (0.0464... from $\sigma^2 = 79.73$)

A1 for both

Final A1 not available if 66 and 65 used

Or

A1 for $P(Y \le 65.5) = 0.0524...$ (0.0521... from $\sigma^2 = 79.73$) or $P(Y \le 64.5) = 0.0415...$ (0.0412... from $\sigma^2 = 79.73$)

A1 for both

A1 for least value of k = 65, dependent on previous two A marks earned.

ADDITIONAL NOTES REGARDING QUESTION 4 (b)

Critical Value Method

 $5 - 1.645 \times 0.0072 \div \sqrt{8}$ gets M1*B1*

= 4.9958... gets A1

4.995 < 4.99581.. gets M1dep* for sensible comparison

A1 still available for correct conclusion in words & context

"Confidence Interval" Method

 $4.995 + 1.645 \times 0.0072 \div \sqrt{8}$ gets M1* B1*

= 4.9991.. gets A1

NOTE that the final M1dep* A1 available only if 1.645 used.

5 > 4.9991... gets M1

A1 still available for correct conclusion in words & context

Probability Method

Finding P(sample mean < 4.995) = 0.0248 gets M1* A1 B1

0.0248 < 0.05* gets M1dep* for a sensible comparison if a conclusion is made.

A1 available for a correct conclusion in words & context.

Condone P(sample mean > 4.995) = 0.9752 for M1 but only allow A1 B1 if later compared with 0.95, at which point the final M1 and A1 are still available

ADDITIONAL NOTE REGARDING OVER-SPECIFICATION OF ANSWERS

Over-specification by providing final answers correct to 5 or more significant figures will be penalised. When this applies, candidates may lose no more than 2 marks per question and no more than 4 marks in total. The only exception to this rule is in Question 3 part (iv) – see guidance note.